Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Environmental dimensions, such as temperature, precipitation, humidity, and vegetation type, influence the activity, survival, and geographic distribution of tick species. Ticks are vectors of various pathogens that cause disease in humans, andIxodes scapularisandAmblyomma americanumare among the tick species that transmit pathogens to humans across the central and eastern United States. Although their potential geographic distributions have been assessed broadlyviaecological niche modeling, no comprehensive study has compared ecological niche signals between ticks and tick-borne pathogens. We took advantage of National Ecological Observatory Network (NEON) data for these two tick species and associated bacteria pathogens across North America. We used two novel statistical tests that consider sampling and absence data explicitly to perform these explorations: a univariate analysis based on randomization and resampling, and a permutational multivariate analysis of variance. Based on univariate analyses, inAmblyomma americanum, three pathogens(Borrelia lonestari,Ehrlichia chaffeensis, andE. ewingii) were tested; pathogens showed nonrandom distribution in at least one environmental dimension. Based on the PERMANOVA test, the null hypothesis that the environmental position and variation of pathogen-positive samples are equivalent to those ofA. americanumcould not be rejected for any of the pathogens, except for the pathogenE. ewingiiin maximum and minimum vapor pressure and minimum temperature. ForIxodes scapularis,six pathogens (A. phagocytophilum,Babesia microti,Borrelia burgdorferisensu lato,B. mayonii,B. miyamotoi, andEhrlichia muris-like) were tested; onlyB. miyamotoiwas not distinct from null expectations in all environmental dimensions, based on univariate tests. In the PERMANOVA analyses, the pathogens departed from null expectations forB. microtiandB. burgdorferisensu lato, with smaller niches inB. microti, and larger niches inB. burgdorferisensu lato, than the vector. More generally, this study shows the value of large-scale data resources with consistent sampling methods, and known absences of key pathogens in particular samples, for answering public health questions, such as the relationship of presence and absence of pathogens in their hosts respect to environmental conditions.more » « less
-
Becker, Daniel (Ed.)The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species wasA.americanum(24098, 97%) followed byDermacentor variabilis(370, 2%),D.albipictus(271, 1%),Ixodes scapularis(91, <1%)and A.maculatum(38, <1%).Amblyomma americanum,A.maculatum and D.variabiliswere active in Spring and Summer, whileD.albipictus and I.scapulariswere active in Fall and Winter. Factors associated with numbers of individuals ofA.americanumincluded day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.more » « less
-
Abstract In North America, the rodent‐borne hantavirus pulmonary syndrome is predominantly caused by the Sin Nombre virus, typically associated with the deer mousePeromyscus maniculatus. Utilizing data from the National Ecological Observatory Network (NEON) hantavirus program, we assessed factors that may influence the spatial and temporal distribution of hantavirus in rodent populations across the United States. Between 2014 and 2019, the NEON hantavirus program conducted 104,379 small mammal captures and collected 14,004 blood samples from 49 species at 45 field sites. Our study identified 296 seropositive samples across 15 rodent species, including 8Peromyscusspecies. We describe six new species with hantavirus seropositive samples not previously reported as hantavirus hosts. The highest number of seropositive samples was obtained fromPe. maniculatus(n = 116; 2.9% seroprevalence), followed byPeromyscus leucopus(n = 96; 2.8%) andMicrotus pennsylvanicus(n = 33; 4.2%). Hantavirus seroprevalence showed an uneven spatial distribution, with the highest seroprevalence found in Virginia (7.8%, 99 seropositive samples), Colorado (5.7%,n = 37), and Texas (4.8%,n = 19). Hantavirus seropositive samples were obtained from 32 sites, 10 of which presented seropositive samples in species other thanPe. maniculatusorPe. leucopus. Seroprevalence was inconsistent across years but showed intra‐annual bimodal trends, and inPe. maniculatusandPe. leucopus, the number of captures correlated with seroprevalence in the following months. Seroprevalence was higher in adult males, with only one seropositive sample obtained from a juvenilePeromyscus truei. Higher body mass, presence of scrotal testes, and nonpregnant status were associated with higher seropositivity. The NEON dataset, derived from a multiyear and structured surveillance system, revealed the extensive distribution of hantavirus across broad taxonomic and environmental ranges. Future research should consider winter season surveillance and continued analyses of stored samples for a comprehensive spatiotemporal study of hantavirus circulation in wildlife. Global changes are expected to affect the dynamics of rodent populations by affecting their availability of resources and demography and, consequently, may modify transmission rates of rodent‐borne zoonotic pathogens such as hantavirus. This study can be considered a baseline to assess hantavirus patterns across host taxa, geographies, and seasons in the United States.more » « less
-
Amblyomma maculatum (Gulf Coast tick), and Dermacentor andersoni (Rocky Mountain wood tick) are two North American ticks that transmit spotted fevers associated Rickettsia . Amblyomma maculatum transmits Rickettsia parkeri and Francisella tularensis , while D. andersoni transmits R. rickettsii , Anaplasma marginale , Coltivirus (Colorado tick fever virus), and F. tularensis . Increases in temperature causes mild winters and more extreme dry periods during summers, which will affect tick populations in unknown ways. Here, we used ecological niche modeling (ENM) to assess the potential geographic distributions of these two medically important vector species in North America under current condition and then transfer those models to the future under different future climate scenarios with special interest in highlighting new potential expansion areas. Current model predictions for A. maculatum showed suitable areas across the southern and Midwest United States, and east coast, western and southern Mexico. For D. andersoni , our models showed broad suitable areas across northwestern United States. New potential for range expansions was anticipated for both tick species northward in response to climate change, extending across the Midwest and New England for A. maculatum , and still farther north into Canada for D. andersoni .more » « less
-
null (Ed.)Ticks rank high among arthropod vectors in terms of numbers of infectious agents that they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby potentially increasing risk for disease incidence. Tick distributions respond to climate change, but how their geographic ranges will shift in future decades and how those shifts may translate into changes in disease incidence remain unclear. In this study, we have assembled correlative ecological niche models for eight tick species of medical or veterinary importance in North America (Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum, A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both present and future climatic conditions. Our goal was to assess whether and how species’ distributions will likely shift in coming decades in response to climate change. We interpret these patterns in terms of likely implications for tick-associated diseases in North America.more » « less
An official website of the United States government
